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Abstract Lipids in biological membranes are asymmetri-
cally distributed across the bilayer; the amine-containing
phospholipids are enriched on the cytoplasmic surface of
the plasma membrane, while the choline-containing and
sphingolipids are enriched on the outer surface. The main-
tenance of transbilayer lipid asymmetry is essential for nor-
mal membrane function, and disruption of this asymmetry
is associated with cell activation or pathologic conditions.
Lipid asymmetry is generated primarily by selective synthe-
sis of lipids on one side of the membrane. Because passive
lipid transbilayer diffusion is slow, a number of proteins
have evolved to either dissipate or maintain this lipid gradi-

 

ent. These proteins fall into three classes: 

 

1

 

) cytofacially-
directed, ATP-dependent transporters (“flippases”); 

 

2

 

) exo-
facially-directed, ATP-dependent transporters (“floppases”);

 

and 

 

3

 

) bidirectional, ATP-independent transporters (“scram-
blases”). The flippase is highly selective for phosphati-
dylserine and functions to keep this lipid sequestered from
the cell surface. Floppase activity has been associated with
the ABC class of transmembrane transporters. Although
they are primarily nonspecific, at least two members of this
class display selectivity for their substrate lipid. Scramblases
are inherently nonspecific and function to randomize the
distribution of newly synthesized lipids in the endoplasmic
reticulum or plasma membrane lipids in activated cells.  It
is the combined action of these proteins and the physical
properties of the membrane bilayer that generate and main-
tain transbilayer lipid asymmetry.
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The transbilayer distribution of lipids across biological
membranes is asymmetric (1). The choline-containing lip-
ids, phosphatidylcholine (PC) and sphingomyelin (SM),
are enriched primarily on the external leaflet of the
plasma membrane or the topologically equivalent lumenal
leaflet of internal organelles. In contrast, the amine-con-

 

taining glycerophospholipids, phosphatidylethanolamine
(PE) and phosphatidylserine (PS), are located preferen-

 

tially on the cytoplasmic leaflet. Other minor phospholipids,
such as phosphatidic acid (PA), phosphatidylinositol (PI),
phosphatidylinositol-4-monophosphate (PIP), and phos-

 

phatidylinositol-4,5-bisphosphate (PIP

 

2

 

), are also enriched
on the cytofacial side of the membrane. This lipid asym-
metry has been most well-characterized in the erythrocyte
membrane, the outer monolayer of which contains 75–

 

80% of the PC and SM, 20% of the PE, PA, PI, and PIP

 

2

 

,
and no detectable PS or PIP (2–6) [methods for measur-
ing transbilayer lipid asymmetry have been reviewed re-
cently (7)]. The distribution of glycosylsphingolipids, an-

 

other significant membrane component, favors the external
leaflet of the plasma membrane (8).

Loss of transmembrane phospholipid asymmetry, with
consequent exposure of PS in the external monolayer, oc-
curs in both normal and pathologic conditions. PS exter-
nalization is induced early in the process of apoptosis (9)
and during platelet activation (10). This perturbation re-
sults in a change in cell surface properties, including con-
version to a procoagulant state (11), increased adhesion
(12), increased aggregation (13), and recognition by
phagocytic cells (14, 15). While these processes are essential
for normal cell development and hemostasis, unregulated
loss of PS asymmetry may contribute significantly to heart
disease and stroke and has been associated with diseases
that have high cardiovascular risk, such as diabetes (16, 17).

A number of recent reviews contain excellent discus-
sions of lipid asymmetry (18), lipid transporters (19–21),
and the consequences of a loss of asymmetry (22, 23).
This review will describe the role of transbilayer lipid
transporters, with emphasis on their substrate specificity
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in the maintenance of lipid asymmetry across the bilayer
of the plasma membrane.

GENERATION OF TRANSMEMBRANE
LIPID ASYMMETRY

Lipid biosynthesis is inherently asymmetric. The en-
zymes responsible for lipid synthesis are localized typi-
cally only on the one side of the membrane in which bio-
synthesis occurs. For the major glycerophospholipids (PS,
PE, PC, and PI), de novo synthesis occurs on the cytosolic
side of the endoplasmic reticulum (ER)(24). With the ex-
ception of PC, this places the newly synthesized lipids on
the side of the membrane in which they are ultimately en-
riched in the plasma membrane. Because of the thermo-
dynamic barrier to spontaneous transbilayer movements,
these lipids should remain enriched on the cytoplasmic
side of the membrane, provided that there is no pertur-
bation to the membrane. However, the asymmetric addi-
tion of newly synthesized phospholipids to one leaflet of
the bilayer generates an unstable membrane. Accumula-
tion of lipid on one side of the membrane can induce
membrane bending and consequent membrane shape
changes (25–27). In addition, evidence indicates that ER
and Golgi membranes may be less asymmetric than the
plasma membrane (28). These problems are rectified by
the presence of a lipid transporter that redistributes ER
phospholipids across the membrane (29–32). Although
de novo glycerophospholipid synthesis is asymmetric, the
action of this transporter defeats vectoral biosynthesis
and results in a more random distribution of lipids across
the bilayer.

Sphingolipids are localized predominately on the ex-
ternal leaflet of the plasma membrane. Unlike PC synthe-
sis, sphingolipid synthesis occurs predominantly on the
side of the membrane in which these lipids ultimately re-
side. With the exception of glucosylceramide (Glc-Cer),
which is synthesized on the cytofacial side of the Golgi, all
of the sphingolipids are synthesized on the lumenal sur-
face of the ER or Golgi, including SM, galactosylcera-
mide, and complex sugar-linked sphingolipids (8, 33,
34). Because Glc-Cer is a precursor of many glycosylsphin-
golipids, a mechanism must exist to transport this lipid
to the lumenal surface of the ER or Golgi. A transporter
that catalyzes the transbilayer movement of short-chain
analogs of Glc-Cer has been discovered (35, 36) that may
serve this function.

The selective accumulation of glycerophospholipids on
one side of the plasma membrane requires that during, or
as a result of, membrane trafficking from the ER to the
plasma membrane that the transbilayer randomizing pro-
cess be inhibited or that an asymmetry-generating process
be activated. Thermodynamic considerations require an
input of energy to generate, or to maintain, a transbilayer
lipid gradient. Both inward and outward ATP-dependent
lipid transport activities have been discovered that selec-
tively move lipids across the plasma membrane. The asym-
metric distribution of phospholipids in the plasma mem-

brane may be the result of the selective trafficking or
regulation of lipid transporting proteins. The retention of
ATP-independent nonselective lipid transporters in the
ER, combined with the trafficking of substrate-specific
ATP-dependent transporters to the plasma membrane
may account for the creation of a highly asymmetric
plasma membrane from the more symmetric ER and
Golgi membranes. Alternatively, lipid randomizing and
asymmetry generating lipid transporters may coexist in
multiple membranes, but be differentially regulated. Dis-
crimination between these models awaits the positive
identification, verification of intracellular location, and
characterization of the biochemical regulation of these
transporters.

MAINTENANCE OF PLASMA MEMBRANE LIPID 
ASYMMETRY BY LIPID TRANSPORTERS

Once lipid asymmetry has been established, it is main-
tained by a combination of slow transbilayer diffusion,
protein-lipid interactions, and protein-mediated trans-
port. The presence of binding sites for acidic lipids, in-
cluding PS, on the cytoskeletal proteins spectrin and band
4.1 (37–39) and soluble membrane-binding proteins such
as annexins (40) suggest that cytofacial protein-mem-
brane interactions may play a role in sequestering PS in
the cytofacial monolayer. Indeed, lipid-symmetric mem-
branes bind cytoskeletal proteins more poorly than lipid-
asymmetric membranes at low ionic strength and have
lower mechanical stability (41). However, the number and
magnitude of the available binding sites is not sufficient to
trap PS (42–45). In addition, spectrin-depleted membranes
(46) and pathologic cells with defective or deficient cyto-
skeletal proteins (47, 48) are capable of generating and
maintaining a PS gradient. These data indicate that, al-
though the plastic properties of the erythrocyte mem-
brane require close association with cytofacial lipids, this
interaction does not play a major role in the maintenance
of lipid asymmetry.

The thermodynamic barrier to passive lipid flip-flop
prevents rapid spontaneous transbilayer diffusion of phos-
pholipids. The half time for phospholipid flip-flop is ap-
proximately several hours to days (49) and depends on
the nature of the lipid and the membrane. In the human
erythrocyte, flip-flop rates are dependent on phospho-
lipid acyl chain length and degree of unsaturation (50–
52). Considering that the half time of flip is much shorter
that the average lifespan of most cell types, it is unlikely
that this phenomenon could account for the maintenance
of phospholipid asymmetry. Other perturbations to mem-
brane structure may induce a rapid reorientation of lipids.
For example, chronic in vitro hyperglycemia (17) or dia-
betes (53) induces the exposure of inner monolayer lipids
on the surface of the erythrocyte plasma membrane and
may contribute to the vascular damage associated with
this disease (54). Although the barrier to rapid sponta-
neous flip-flop contributes to the maintenance of lipid
asymmetry, other mechanisms must be responsible for the
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regeneration of lipid asymmetry or the activation-induced
rapid loss of asymmetry.

Perhaps the most significant contributors to the mainte-
nance and dissipation of transbilayer lipid asymmetry are
proteins that catalyze the movement of lipids across the
membrane (

 

Table 1

 

). These activities are classified ac-
cording to substrate specificity, requirements for energy,
and direction of transport (

 

Fig. 1

 

). Two classes of trans-
port activities have been described that are responsible for
the ATP-dependent transport of lipids. The most well-
characterized activity is the aminophospholipid translo-
case or “flippase,” which transports PS from the outer
monolayer to the cytoplasmic surface of the plasma mem-
brane. A second ATP-dependent activity, catalyzed by
“floppases,” transport lipids in the opposite direction. The
most well-characterized floppase activities have been
shown to catalyze the inner-to-outer monolayer transport
of short-chain fluorescent lipids and the selective efflux of
PC or cholesterol. Three ATP-independent and relatively
nonspecific scramblase activities have been reported; a
plasma membrane Ca

 

2

 

�

 

-activated transporter, an ER glyc-
erophospholipid-specific transporter, and an ER mono-
hexosyl-lipid transporter.

The ultimate transbilayer distribution of lipids is deter-
mined by the specificity of the lipid transporters located
in the membrane. Each of the transport activities de-
scribed above displays a unique specificity or nonspecific-
ity that defines its function in the determination of lipid
organization. A number of excellent reviews have sur-
veyed the subject of lipid transporters recently (7, 18, 19,
21). The following summarizes the current state of knowl-
edge regarding the specificity of these transport activities
and, where evidence is available, the protein(s) involved.

FLIPPASES

Aminophospholipid flippase activity was first reported
by Devaux and coworkers who measured the ATP-depen-
dent uptake of spin-labeled lipid analogs in human eryth-
rocytes (55). Phospholipids labeled with fluorescent fatty
acids, particularly 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)
derivatives, have also been used extensively to study this
transporter (56–58). The addition of these polar, bulky
substituents to the fatty acid component of lipids may po-
tentially alter transporter-lipid interactions, thus question-
ing whether movements measured with these lipids reflect

 

the behavior of endogenous lipids. These spin and fluo-
rescent probes are powerful tools, but their use requires
careful interpretation (59, 60) and independent verifica-
tion that their movements reflect those of endogenous lip-
ids. In addition to spin-labeled and fluorescent lipids, na-
tive and radiolabeled short (25, 61, 62) and long (63)
chain fatty acid-containing species have been used to mea-
sure flippase activity. The use of these lipids is more diffi-
cult and restricted, but their behavior may reflect more
accurately the behavior of endogenous lipids.

Flippase-catalyzed transport is linked to an ATPase;
transport activity requires ATP (25, 55) and Mg

 

2

 

�

 

 (61, 64)
and is inhibited by vanadate (55). The stoichiometry of
transport is approximately 1 ATP consumed per lipid
transported (65). Flippase activity is sensitive to tempera-
ture and to a number of nonspecific reagents, including
sulfhydryl oxidizing and alkylating agents (25, 66), and
histidine reagents (67). Flippase activity is also inhibited
by Ca

 

2

 

�

 

 (25, 64), indicating that the activity of this enzyme
may be regulated in activated cells.

The flippase is widely distributed and is present in most
plasma membranes. Aminophospholipid flippase activity
is ubiquitously expressed in erythrocytes (68) and has
been detected in a wide variety of cell types and mem-
branes, including platelets (25, 69), lymphocytes (70),
aortic endothelial cells (71), fibroblasts (57, 72, 73), pheo-
chromacytoma cells (74), hepatocytes (75), spermatozoa
(76), synaptosomes (77), and chromaffin granules (78).
Activity is present at both the apical and basolateral sur-
faces of polarized epithelial cells (79). It is likely that this
transporter is essential for any membrane in which the
maintenance of PS asymmetry is required.

The aminophospholipid flippase is perhaps the most se-
lective of the lipid transporters. It prefers PS over other
lipids (25, 55), and the specificity for PS is defined by each
of the functional groups of the lipid (

 

Fig. 2

 

). The amine
group is absolutely required; phosphatidylhydroxypropi-
onate, a PS analog without an amino group, is not a
substrate for transport (80). The enzyme can tolerate
monomethylation of PS (80) and, to a limited extent, PE
(81). However, progressive methylation of PE reduces
transport significantly (81). The carboxyl group is not es-
sential (PE is also a transport substrate), but its absence
lowers the rate of transport approximately 10-fold (82),
and methyl esterification of the carboxyl group reduces
transport activity significantly (80, 81). In contrast to
other PS-specific proteins, such as protein kinase C (83)

 

TABLE 1. Lipid specificity of transbilayer lipid transporters

 

Class Protein Specificity Reference

 

Flippases P

 

4

 

-ATPases amphipaths (102, 103)
erythrocyte Mg

 

2

 

�

 

-ATPase PS (94)
ABCR 

 

N

 

-retinylidene-PE (137)
Floppases ABCA1 cholesterol (117–119)

ABCB1 none (123)
ABCB4 PC (123)
ABCC1 short-chain phospholipids (133)

Scramblases PLSCR1 none (149)
ER flippase none (29–32)
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and the macrophage PS receptor (84, 85), the stere-
ochemistry of the 

 

l

 

-serine headgroup is unimportant for
recognition by the flippase; both the 

 

d

 

- and 

 

l

 

-serine iso-
mers are transported equally well (80, 81, 86). The glyc-
erol backbone is another important recognition element.
Although diacylglycerophosphoserine is the preferred
substrate, 1,3,4-butanetriol analogs are transported with
similar rates (87). Sphingolipid (81) and diether analogs
(88) of PS are also recognized as transport substrates, but
transport rates are reduced compared with diacylglycero-
phosphoserine. This indicates that there is some flexibility
in lipid backbone recognition by the enzyme. However,
the enzyme displays an absolute requirement for the stere-
ochemistry of the glycerol backbone; the 

 

sn

 

-2,3-glycerol
analog of the naturally-occurring 

 

sn

 

-1,2-glycero-lipid is not
a substrate for transport (72, 80). In contrast to the polar
headgroup specificity, the flippase is capable of accepting
PS molecules containing fatty acids of various lengths and
composition, including spin, fluorescent, and photoacti-
vatable groups (25, 55, 58, 59, 63, 89–91), but prefers re-
porter groups attached to longer acyl chains (58, 59). Us-
ing an endocytosis mutant, Nichols recently demonstrated
a similar ATP-dependent transport activity in yeast, al-
though NBD-PC was transported in addition to NBD-PE
(92, 93). The relationship between this protein and the
aminophospholipid flippase is not yet clear.

 

The identity of the aminophospholipid flippase remains
elusive. Attempts at direct purification of the protein from
erythrocytes based on the biochemical properties listed
above have yielded preparations with varying characteris-
tics [for review see Daleke and Lyles (94)]. However, the
ATPase activity of these candidate erythrocyte flippases are
stimulated specifically by 

 

sn

 

-1,2-glycerophosphoserine (80,
94, 95). One of these PS-stimulated Mg

 

2

 

�

 

-ATPases has
been reconstituted and demonstrated to transport PS (96).

Another candidate flippase (ATPase II) has been puri-
fied and cloned from bovine chromaffin granules (97–
99). Close homologs of this protein have been identified
from bovine brain (100) and human [ATP8A1 (101)]
sources. These proteins are members of a new class of
P-type ATPases, the P

 

4

 

-ATPases (99, 102, 103). Defects in
genes of this family produce alterations in ribosomal as-
sembly [Drs2 (104, 105)], cold sensitivity in plants [ALA1
(106)], and familial intrahepatic cholestasis [ATP8B1,
FIC1 (107)]. Although some controversy exists regarding
whether Drs2 is a flippase (105, 108) it is widely believed
that the P

 

4

 

-ATPase family are lipid transporters. Like the
erythrocyte Mg

 

2

 

�

 

-ATPase, the ATPase activity of these en-
zymes is selectively activated by PS (98, 100, 109). Recent
evidence also indicates that another member of this family
(ATP10C) may be associated with Angelman syndrome, a
neurological disorder in humans (110), and fat metabo-
lism in mice (111). Although no direct evidence for trans-
bilayer phospholipid transport has been reported, it is
likely that the P

 

4

 

-ATPases are involved either directly or in-
directly in amphipath transport. Whether this activity par-
ticipates in the maintenance of transmembrane asymme-
try remains to be resolved. The high degree of specificity
that the flippase demonstrates for its substrate should en-
able the eventual positive identification of this protein.

FLOPPASES

The second class of ATP-dependent lipid transporters is
the exofacially-directed floppases. Early studies in red

Fig. 1. Schematic representation of the action of transbilayer transporters in the eucaryotic plasma mem-
brane. Phosphatidylcholine (PC), sphingomyelin (SM), and sugar-linked sphingolipids (X-Sph) are en-
riched in the outer monolayer, while phosphatidylserine (PS) and phosphatidylethanolamine (PE) are se-
questered on the cytoplasmic monolayer. This distribution is maintained by (left) an inwardly directed PS
flippase. In some tissues an outwardly directed PC or cholesterol floppase (middle) is responsible for the ef-
flux of these lipids. A nonspecific, Ca2�-stimulated scramblase (right) randomizes phospholipid (PL) distri-
bution in activated cells.

Fig. 2. Structural determinants of substrate specificity by the ami-
nophospholipid flippase. R1, R2 � acyl preferred, but alkyl accepted;
length and unsaturation independent; fluorescent, spin label, and
photoaffinity groups also accepted; R3 � H or methyl; n � 1–2.
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blood cells revealed a nonspecific outward flux pathway
for NBD- and spin-labeled lipids (67, 112). It was recog-
nized subsequently that some members of the ABC trans-
porter superfamily are also capable of transporting lipids
[for recent reviews see (19, 20)].

ABC transporters are a diverse group of proteins that,
in general, are responsible for the ATP-dependent export
of amphipathic compounds. These include the multidrug
resistance proteins, which export cytotoxic xenobiotics
and were first discovered in drug-resistant tumor cells.
Multidrug resistance proteins are also present in yeast and
some members of this subfamily (

 

C. albicans

 

 CDR1, CDR2,
CDR3) have been shown to be lipid transporters (113,
114). ABC transporters are also widely expressed in
prokaryotes. One of these proteins, MsbA, is an inner
membrane transporter involved in lipid A export to outer
membrane (115). The ATPase activity of purified MsbA is
selectively activated by hexacetylated lipid A (116).

Consistent with their role in general xenobiotic amphi-
path export, ABC proteins are, for the most part, nonspe-
cific. However, some members of this class demonstrate a
unique specificity for their respective substrate. The most
well-characterized lipid floppase activities are those cata-
lyzed by ABCA1, ABCB1, ABCB4, and ABCC1.

The ABC transporter ABCA1 (ABC1) has been shown to
transport cholesterol out of cells for collection by HDL.
ABCA1 is defective in Tangier’s disease (117–119), an auto-
somal recessive disorder characterized by low HDL levels
and peripheral accumulation of cholesterol. ABCA1 has
also been linked to PS transport (120, 121) and is required
for macrophage engulfment of prey in 

 

C. elegans

 

 (122).
This transporter may act as a floppase for both cholesterol
and PS. Whether cholesterol and PS transport are linked is
unclear, but this protein likely serves an efflux function,
and is not involved in the maintenance of lipid asymmetry.

ABCB1 (MDR1) is a ubiquitous multidrug resistance xe-
nobiotic transporter and is a lipid transporter of broad
specificity. In LLC-PK1 epithelial cells, it catalyzes the efflux
of NBD or short-chain PC, PE, SM, Glc-Cer, and Gal-Cer
(123), but not NBD-PS (124), and may also function to fa-
cilitate the movement of platelet activating factor to the cell
surface (125). The reconstituted enzyme is similarly non-
specific but, in contrast to ABCB1 in situ, also transports
NBD-PS (126). The lack of specificity exhibited by ABCB1
makes it unlikely to be a regulator of transbilayer lipid
asymmetry. Instead, transport of these NBD-labeled lipids
may reflect nonspecific xenobiotic recognition by ABCB1.

ABCB4 (MDR3, mMdr2) is a selective PC transporter
(123). Mice homozygous for a disruption in the mMdr2
gene do not secrete phospholipid into the bile and, as a
result, develop liver disease (127). Secretory vesicles iso-
lated from yeast transfected with mMdr2 are capable of
ATP-dependent, vanadate-sensitive uptake of short-chain
fluorescent PC (128). Further confirmation of the role of
this enzyme as a PC transporter was the demonstration of
ATP-dependent PC transport, but not PE transport, in bile
canilicular membranes vesicles (129). In keeping with its
role in bile formation, the tissue distribution of ABCB4 is
restricted to the liver and bile canilicular membrane (127,

130). Like ABCA1 and ABCB1, ABCB4 may be involved in
lipid efflux rather than in the maintenance of plasma
membrane lipid asymmetry.

ABCC1 (MRP1) was identified initially as a conjugated
glutathione transporter (131, 132). This enzyme was also
shown to catalyze the efflux of short-chain NBD phospho-
lipid analogs, but not endogenous lipids (such as PS),
from the inner to the outer monolayer of the erythrocyte
(57, 133, 134) and may account for the previously de-
scribed efflux activity of these lipids (67, 112). Cells from
an ABCC1

 

�

 

/

 

�

 

 knockout mouse show no efflux of NBD-PC
or -PS but possess functional flippase activity (135). Also
located on the basolateral surface of LLC-PK1 cells,
ABCC1 is capable of transporting the labeled sphingolip-
ids, NBD-Glc-Cer and NBD-SM, to the exofacial side of the
membrane (136). Extensive (24–48 h) treatment of eryth-
rocytes with inhibitors of ABCC1 causes a disruption in
the distribution of NBD-labeled and native choline phos-
pholipids (PC and SM), but has no effect on PS or PE dis-
tribution (134). These data suggest that ABCC1 is an out-
wardly directed PC and sphingolipid-selective transporter
and may play a role in the maintenance of choline and
sphingolipid distribution in some cells.

It is interesting to note that not all ABC lipid transport-
ers are floppases. ABCR is another ABC protein with lipid
transport activity although it is a flippase, rather than a
floppase. ABCR is present in retinal rod cell outer seg-
ment disc membranes and transports 

 

N

 

-retinylidene-PE
from the disc lumen to the cytofacial side of the mem-
brane (137). This protein may serve to transport all trans-
retinal to the cytoplasm for subsequent export. Consistent
with this hypothesis, a deficiency in the ABCR gene leads
to retinal degeneration (138, 139).

SCRAMBLASES

Rather than assist in the maintenance of lipid asymme-
try, scramblases function to degrade transbilayer phospho-
lipid gradients by catalyzing energy-independent bidirec-
tional transbilayer transport. Three scramblase activities
have been reported; two are involved in dissipating lipid
gradients in biogenic membranes and the third is acti-
vated by Ca

 

2

 

�

 

 in the plasma membrane of stimulated cells.
The ER scramblase was first described as a bidirectional

transporter of PC and its metabolites (29, 140), and has
been subsequently shown to be relatively nonspecific (30,
141). Transport activity has been reconstituted from crude
(31, 140) and purified (32) ER membrane proteins. The
previously described monohexosylsphingolipid transporter
is also bidirectional and is selective for Glc-Cer or Gal-Cer
(35, 36). Evidence has not been found for the activity of
these transporters in the plasma membrane. Thus, they
may serve only to redistribute newly synthesized lipids or
lipid precursors in ER and Golgi membranes.

The Ca

 

2

 

�

 

 activated scramblase plays an important role
in plasma membrane reorganization in response to cell
stimulation, such as that accompanying platelet activation
and apoptosis. The dissipation of transbilayer asymmetry
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results in the exposure of PS on the surface of the cell,
which activates blood clotting factors (10) and recogni-
tion of the cell by macrophages (9, 142, 143).

Putative scramblases have been purified from erythro-
cytes (144) and platelets (145). The erythrocyte protein
(PLSCR1) has been cloned (146), and several additional
isoforms have been discovered recently (147). However,
blood cells from a mouse PLSCR1 knockout are not defi-
cient in activation-induced lipid scrambling (148), sug-
gesting that this protein may not be a scramblase. The
presence on PLSCR1 of potential signaling motifs (149),
protein phosphorylation sites (150, 151), and accumula-
tion in plasma membrane lipid rafts (152) indicates that
this protein may play a role in cellular signaling rather
than, or in addition to, its role in lipid randomization.

The Ca

 

2

 

�

 

 activated scramblase is relatively nonspecific;
it randomizes the distribution of all of the major classes of
endogenous (153) and NBD-labeled phospholipids (154).
Recent evidence indicates that the scramblase prefers
glycerophospholipid analogs and is sensitive to head-
group size (155). However, in general, this transporter is
nonselective and serves primarily to express PS on the sur-
face of activated cells.

CONCLUSION

The interplay between these nonselective and selective
transporters results in the maintenance and, in some
cases, the generation of transbilayer lipid asymmetry. Non-
selective scramblases in biogenic membranes equalize the
distribution of newly synthesized lipids, and selective ATP-
dependent transporters maintain the asymmetric distribu-
tion of lipids. Although the tissue distribution and the ex-
pression of some of the these transporters is restricted,
plasma membrane lipid asymmetry is maintained by selec-
tive inward flux of aminophospholipids and, perhaps in
some cells, outward flux of choline- and sphingophospho-
lipids. The concentration gradients generated by these
transporters can be dissipated by a nonselective Ca

 

2

 

�

 

-acti-
vated scramblase in response to cell stimulation.

These proteins have proven to be elusive and difficult
to purify and reconstitute. Either they are intrinsically un-
stable or the process of purification removes an essential
component. For example, it is possible that the functional
unit of some of these transporters is multimeric and that
protein-protein interactions are essential for the regula-
tion of transport activity. Advances have been made in the
identification of the proteins involved, but positive identi-
fication awaits successful reconstitution and demonstra-
tion of lipid transport activity.
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ERRATA 

In the article “Regulation of transbilayer plasma membrane phospholipid asymmetry” by David L. Daleke, pub-
lished in the February 2003 issue of the 

 

Journal of Lipid Research

 

 (Volume 

 

44

 

, pages 233–242), in Fig. 2 the stereochem-
istry of the glycerol C2 position is not rendered correctly. The stereochemistry described in the text (

 

sn

 

-1,2-glycerol
configuration) is shown in the corrected Fig. 2 below.
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